PERTIDAKSAMAAN LOGARITMA

KETENTUAN

aP = a . a . a . a . . . . . . . . . . . . . . . . . sampai p faktor

(a dinamakan bilangan pokok, p dinamakan pangkat atau eksponen)

SIFAT-SIFAT

1. ap . aq = ap + q 5. a0 = 1
2. ap . aq = ap – q 6. a – p = 1/ap
3. (ap)q = apq 7. am/n = nÖ(am)
4. (a.b)p = ap . bp

contoh:

  1. 3pq+q . 32p)/(3pq+p . 32q) = (3pq+q+2p)/(3pq+p+2q) = 3p-q
  2. (0,0001)-1 Ö0,04 = (10-4)-1(0,2) = (104)(0,2) = 2000
  3. (0,5)2 + 1/5Ö32 + 3Ö0,125 = 0,25 + 1/2 + 0,5 = 1,25
    [ket : 32 = 25 ; 0,125 = (0,5)3 ]
  4. Apabila p = 16 dan q = 27, maka2p-1/2 – 3p0 + q4/3 = 2(24)-1/2 – 3(24)0 + (33)4/3
    = 2(2-2) – 3(1) + 34 = 2-1 -3(1) + 81
    = 1/2 – 3 + 81 = 78 1/2

Adalah persamaan yang didalamnya terdapat pangkat yang berbentuk fungsi dalam x (x sebagai peubah).

[Ket. : Usahakan setiap bilangan pokok ditulis sebagai bilangan berpangkat dengan bilangan dasar 2, 3, 5, 7, dst].

BENTUK-BENTUK

A. af(x) = ag(x) ® f(x) = g(x)

® Samakan bilangan pokoknya sehingga pangkatnya dapat        disamakan.

contoh :

2 SUKU ® SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI

  1. Ö(82x-3) = (32x+1)1/4
    (23)(2x-3)1/2 = (25)(x+1)1/4
    2(6x-9)/2 = 2(5x-5)/4
    (6x-9)/2 = (5x-5)/4
    24x-36 = 10x+10
    14x = 46
    x = 46/14 = 23/7
  2. 3x²-3x+2 + 3x²-3x = 10
    3².3x²-3x+3x²-3x = 10
    9. 3x²-3x + 3x²-3x = 10
    10. 3x²-3x = 10
    3x² – 3x = 30
    x² – 3x = 0
    x(x-3) = 0
    x1 = 0 ; x2 = 3

3 SUKU ® GUNAKAN PEMISALAN

  1. 22x + 2 – 2 x+2 + 1 = 0
    22.22x – 22.2x + 1 = 0
    Misalkan : 2x = p
    22x = (2x)² = p²
    4p² -4p + 1 = 0
    (2p-1)² = 0
    2p – 1 = 0
    p =1/2
    2x = 2-1
    x = -1
  2. 3x + 33-x – 28 = 10
    3x + 33/3x – 28 = 10
    misal : 3x = p
    p + 27/p – 28 = 0
    p² – 28p + 27 = 0
    (p-1)(p-27) = 0
    p1 = 1 ® 3x = 30
    x1 = 0
    p2 = 27 ® 3x = 33
    x2 = 3

B. af(x) = bf(x) ® f(x) = 0

Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0.

Contoh:

  1. 3x²-x-2 = 7x²-x-2
    x² – x -2 = 0
    (x-2)(x+1) = 0
    x1 = 2 ; x2 = -1

C. af(x) = bf(x) ® f(x) log a = g(x) log b

Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma.

Contoh:

  1. 4x-1 = 3x+1
    (x-1)log4 = (x+1)log3
    xlog4 – log4 = x log 3 + log 3
    x log 4 – x log 3 = log 3 + log 4
    x (log4 – log3) = log 12
    x log 4/3 = log 12
    x log 4/3 = log 12
    x = log 12/ log 4/3 = 4/3 log 12

D. f(x) g(x) = f(x) h(x)

® Bilangan pokok (dalam fungsi) sama, pangkat berbeda.Tinjau        beberapa kemungkinan.

  1. Pangkat sama g(x) = h(x)
  2. Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1
  3. Bilangan pokok f(x) = -1
    Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilai
    pangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.

    ket :
    g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1
    g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1

  4. Bilangan pokok f(x) = 0
    Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.

    ket : g(x) dan h(x) positif ® 0g(x) = 0h(x) = 0

Contoh:

(x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3

  1. Pangkat sama
    3x – 2 = 2x + 3 ® x1 = 5

  2. Bilangan pokok = 1
    x² + 5x + 5 = 1
    x² + 5x + 4 = 0
    ® (x-1)(x-4) = 0 ® x2 = 1 ; x3 = 4

  3. Bilangan pokok = -1
    x² – 5x + 5 = -1
    x² – 5x + 6 = 0
    ® (x-2)(x-3) = 0 ® x = 1 ; x = 4

    g(2) = 4 ; h(2) = 7 ; x=2 tak memenuhi karena (-1)4 ¹ (-1)7
    g(3) = 7 ; h(3) = 9 ; x4 = 3 memenuhi karena (-1)7 = (-1)9 = -1

  4. Bilangan pokok = 0
    x² – 5x + 5 = 0
    ® x5,6 = (5 ± Ö5)/2

    kedua-duanya memenuhi syarat, karena :
    g(2 1/2 ± 1/2

    Ö5) > 0
    h(2 1/2 ± 1/2 Ö5) > 0

    Harga x yang memenuhi persamaan diatas adalah :
    HP : { x | x = 5,1,4,3,2 1/2 ± 1/2

    Ö5}

Bilangan Pokok a > 0 ¹ 1

Tanda Pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya
a > 1
0 < a < 1
af(x) > ag(x) ® f(x) > g(x)
af(x) < ag(x) ® f(x) < g(x)

(tanda tetap)

af(x) > ag(x) ® f(x) < g(x)
af(x) < ag(x) ® f(x) > g(x)

(tanda berubah)

Catatan: Untuk memudahkan mengingat, bilangan pokok 0 < a < 1 diubah saja menjadi a = 1.

Misal : 1/8 = (1/2)3 = 2-3

Contoh:

  1. (1/2)2x-5 < (1/4)(1/2x+1)
    (1/2)2x-5 < (1/2)2(1/2x+1)

    Tanda berubah (0 < a < 1)

    2x – 5 > x +2
    x > 7

  2. 32x – 4.3x+1 + 27 > 0
    (3x)² – 4.31.3x + 27 > 0
    misal : 3x = p
    p² -12p + 27 > 0
    (p – 9)(p – 3) > 0

BATASAN

Logaritma bilangan b dengan bilangan pokok a sama dengan c yang memangkatkan a sehingga menjadi b.

a log b = c ® ac = b ® mencari pangkat

Ket : a = bilangan pokok    (a > 0 dan a ¹ 1)
b = numerus            (b > 0)
c = hasil logaritma

Dari pengertian logaritma dapat disimpulkan bahwa :

alog a = 1 ; alog 1 = 0 ; alog an = n

SIFAT-SIFAT

1. alog bc = alogb + alogc
2. alog bc = c alog b
3. alog b/c = alog b –alog c ® Hubungan alog b/c = – a log b/c
4. alog b = (clog b)/(clog a)
® Hubungan alog b = 1 / blog a
5. alog b. blog c = a log c
6. a alog b = b
7. alog b = c ® aplog bp = c
® Hubungan : aqlog bp = alog bp/q
= p/q alog b

Keterangan:

  1. Bila bilangan pokok suatu logaritma tidak diberikan, maka maksudnya logaritma tersebut berbilangan pokok = 10.[

    log 7 maksudnya 10log 7 ]

  2. lognx adalah cara penulisan untuk (logx)n
    Bedakan dengan log xn = n log x

Contoh:

  1. Tentukan batas nilai agar log (5 + 4x – x²) dapat diselesaikan !
    syarat : numerus > 0
    x² -4x – 5 < 0
    (x-5)(x+1) < 0
    -1 < x < 5
  2. Sederhanakan 2 3log 1/9 + 4log 2 = 2(-2) + 1/2 =
    3log 2. 2log 5 .52log 3 3log 2.2log 5. log3

    – 3 1/2 =   -3 1/2 = -7
    3log 31/2 1/2

  3. Jika 9log 8 = n   Tentukan nilai dari 4log 3 !9log 8 = n
    log 2³ = n
    3/2 3log 2 = n
    3log 2 = 2n
    3

    4log 3 = log 3
    = 1/2 ²log 3
    = 1/2 ( 1/(³log 2) )
    = 1/2 (3 / 2n)
    = 3/4n

  4. Jika log (a² / b4)      Tentukan nilai dari log ³Ö(b²/a) !

    log (a²/b4)
    log (a/b²)²
    2 log ( a/b²)
    log ( a/b² )
    log ³Ö(b²/a)
    = -24
    = -24
    = -24
    = -12
    = log (b²/a)1/3
    = 1/3 log (b² / a)
    = -1/3 log (a/b²)
    = -1/3 (-12) = 4

Masalah : Menghilangkan logaritma

alog f(x) = alog g(x) ® f(x) = g(x)

alog f(x) = b ® f(x) =ab

f(x)log a = b ® (f(x))b = a

Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi. (Bilangan pokok > 0 ¹ 1 dan numerus > 0 )

Contoh:

Tentukan nilai x yang memenuhi persamaan berikut !

  1. xlog 1/100 = -1/8
    x-1/8 = 10-2
    (x -1/8) -8 = (10-2)-8
    x = 10 16

  2. xlog 81 – 2 xlog 27 + xlog 9 + 1/2 xlog 729 = 6
    xlog 34 – 2 xlog33 + xlog² + 1/2 xlog 36 = 6
    4 xlog3 – 6 xlog3 + 2 xlog3 + 3 xlog 3 = 6
    3 xlog 3 = 6
    xlog 3 = 2
    x² = 3 ® x = Ö3 (x>0)
  3. xlog (x+12) – 3 xlog4 + 1 = 0
    xlog(x+12) – xlog 4³ = -1
    xlog ((x+12)/4³) = -1
    (x+12)/4³ = 1/x
    x² + 12x – 64 = 0
    (x + 16)(x – 4) = 0
    x = -16 (TM) ; x = 4
  4. ²log²x – 2 ²logx – 3 = 0misal :   ²log x = p

    p² – 2p – 3 = 0
    (p-3)(p+1) = 0

    p1 = 3
    ²log x = 3
    x1 = 2³ = 8

    p2 = -1
    ²log x = -1
    x2 = 2-1 = 1/2

Bilangan pokok a > 0 ¹ 1

Tanda pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya
a > 1
0 < a < 1
a log f(x) > b ® f(x) > ab
a log f(x) < b ® f(x) < ab

(tanda tetap)

a log f(x) > b ® f(x) < ab
a log f(x) < b ® f(x) > ab

(tanda berubah)

syarat f(x) > 0

Tentang putrimarwa

(¯`v´¯) ..... ·.¸.·´ ...¸.·´ .. ( ☻/ /▌♥♥ / cinta itu??????? ╔══╗ ♥ ♫ ♥ ║██║ ♫ ♥ ♫ ║(O)║♥ music banget ♥ ╚══╝ ♥ i love u ♥ cew...yang santai,,,,,selalu happy....
Pos ini dipublikasikan di matematika. Tandai permalink.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s